Quantitative Risk Management in Python
Jamsheed Shorish
CEO, Shorish Research
loss
observationsloss.quantile()
at specified confidence levelVaR = computed .quantile()
at desired confidence level
scipy.stats
loss distribution: percent point function .ppf()
can also be used
loss = pd.Series(observations)
VaR_95 = loss.quantile(0.95) print("VaR_95 = ", VaR_95)
Var_95 = 1.6192834157254088
scipy.stats.norm.expect()
does this).losses = pd.Series(scipy.stats.norm.rvs(size=1000))
VaR_95 = scipy.stats.norm.ppf(0.95)
CVaR_95 = (1/(1 - 0.95))*scipy.stats.norm.expect(lambda x: x, lb = VaR_95)
print("CVaR_95 = ", CVaR_95)
CVaR_95 = 2.153595332530393
Quantitative Risk Management in Python