Quantitative Risk Management in Python
Jamsheed Shorish
Computational Economist
asset_returns
portfolio_returns
using portfolio weights
portfolio_returns
into losses
np.quantile()
for losses
at e.g. 95% confidence level
weights = [0.25, 0.25, 0.25, 0.25]
portfolio_returns = asset_returns.dot(weights)
losses = - portfolio_returns
VaR_95 = np.quantile(losses, 0.95)
norm
from scipy.stats
total_steps
(1 day = 1440 minutes)N
mu
and standard deviation sigma
of portfolio_losses
datafrom scipy.stats import norm
total_steps = 1440
N = 10000
mu = portfolio_losses.mean() sigma = portfolio_losses.std()
daily_loss
vector for N
runsN
runsloss
vectornorm.rvs()
to draw repeatedly from standard Normal distributionmu
and sigma
scaled by 1/total_steps
daily_loss = np.zeros(N)
for n in range(N):
loss = ( mu * (1/total_steps) + norm.rvs(size=total_steps) * sigma * np.sqrt(1/total_steps) )
daily_loss
, for each run n
np.quantile()
to find the VaR at e.g. 95% confidence level, over daily_loss
daily_loss = np.zeros(N) for n in range(N):
loss = mu * (1/total_steps) + ... norm.rvs(size=total_steps) * sigma * np.sqrt(1/total_steps)
daily_loss[n] = sum(loss)
VaR_95 = np.quantile(daily_loss, 0.95)
e_cov
Quantitative Risk Management in Python