Unsupervised Learning in Python
Benjamin Wilson
Director of Research at lateral.io

PCA is a scikit-learn component like KMeans or StandardScalerfit() learns the transformation from given datatransform() applies the learned transformationtransform() can also be applied to new datasamples = array of two features (total_phenols&od280)[[ 2.8 3.92]
...
[ 2.05 1.6 ]]
from sklearn.decomposition import PCAmodel = PCA() model.fit(samples)
PCA()
transformed = model.transform(samples)
print(transformed)
[[ 1.32771994e+00 4.51396070e-01]
[ 8.32496068e-01 2.33099664e-01]
...
[ -9.33526935e-01 -4.60559297e-01]]
total_phenols and od280


components_ attribute of PCA objectprint(model.components_)
[[ 0.64116665 0.76740167]
[-0.76740167 0.64116665]]
Unsupervised Learning in Python