Predicting CTR with Machine Learning in Python
Kevin Huo
Instructor
print(df.hour.head(1))
14102101
df['hour'] = pd.to_datetime(
df['hour'], format = '%y%m%d%H')
df['hour_of_day'] = df['hour'].dt.hour
print(df.hour.head(1))
2014-10-21 01:00:0
print(df.groupby('hour_of_day')
['click'].sum())
click
hour_of_day
1 1092
2 6546
Categorical features must be converted into a numerical format
Hash function: maps arbitrary input to an integer output, returning exact same output for a given input
Lambda function: lambda x: f(x)
Apply hash function via f(x) = hash(x)
as follows:
df['site_id'] = df['site_id'].apply(lambda x: hash(x), axis = 0)
83a0ad1a -> -9161053084583616050
85f751fd-> 818242008494177460
count()
and nunique()
:df['ad_type'].count()
50000
df['ad_type'].nunique()
31
Adding more features is better for predictive power
Example of new feature: impressions by device_id
(user) and search_engine_type
:
df['device_id_count'] = df.groupby('device_id')['click'].transform("count")
df['search_engine_type_count'] = df.groupby('search_engine_type')['click'].transform("count")
print(df.head(1))
... device_id_count search_engine_type_count
... 40862 47710
Predicting CTR with Machine Learning in Python