Predicting CTR with Machine Learning in Python
Kevin Huo
Instructor
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.neural_network import MLPClassifier
classifier.fit(X_train, y_train)
predict_proba()
and predict()
max_depth
, min_samples_split
n_estimators
, oob_score
fit_intercept
, class_weight
hidden_layer_sizes
, max_iter
confusion_matrix(y_test, y_pred)
precision_score(y_test, y_pred)
precision_score(y_test, y_pred)
fbeta_score(y_test, y_pred, beta = 0.5)
roc_auc_score(y_test, y_score[:, 1])
Predicting CTR with Machine Learning in Python