Predicting CTR with Machine Learning in Python
Kevin Huo
Instructor
site_id
, app_id
, device_id
, etc.df.var()
click 1.294270e-01
hour 1.123316e-01
df.var().median()
0.7108583771671939
print(df['click'].var())
df['device_id_count'] = df[
'device_id_count'].apply(
lambda x: np.log(x))
print(df['click'].var())
249362570.10134825
15.628476003312514
StandardScaler()
as follows:scaler = StandardScaler()
X[numeric_cols] = scaler.fit_transform(X[numeric_cols])
dtype: float64
1 10.5 -> 0.85
2 32.3 -> 1.54
Predicting CTR with Machine Learning in Python