GARCH Models in Python
Chelsea Yang
Data Science Instructor
An approach to evaluate model forecasting capability
Compare the model predictions with the actual historical data
In-sample: model fitting
Out-of-sample: backtesting
Mean Absolute Error
Mean Squared Error
from sklearn.metrics import mean_absolute_error, mean_squared_error
# Call function to calculate MAE
mae = mean_absolute_error(observation, forecast)
# Call function to calculate MSE
mse = mean_squared_error(observation, forecast)
GARCH Models in Python