GARCH Models in Python
Chelsea Yang
Data Science Instructor
Is it relevant
KISS: keep it simple stupid
Null hypothesis (H0): a claim to be verified
H0: parameter value = 0
If H0 cannot be rejected, leave out the parameter
The odds of the observed results could have happened by chance
The lower the p-value, the more ridiculous the null hypothesis looks
Reject the null hypothesis if p-value < significance level
print(gm_result.summary())
print(gm_result.pvalues)
mu 9.031206e-08
omega 1.619415e-05
alpha[1] 4.283526e-10
beta[1] 1.302531e-183
Name: pvalues, dtype: float64
print(gm_result.summary())
print(gm_result.tvalues)
mu 5.345210
omega 4.311785
alpha[1] 6.243330
beta[1] 28.896991
Name: tvalues, dtype: float64
# Manual calculation
t = gm_result.params/gm_result.std_err
GARCH Models in Python