Handling Missing Data with Imputations in R
Michal Oleszak
Machine Learning Engineer
Cons
Pros
nhanes_imp <- hotdeck(nhanes, variable = c("Height", "Weight"))
head(nhanes_imp)
Age Gender Weight Height Diabetes TotChol Pulse PhysActive Height_imp Weight_imp
1 16 male 73.2 172.0 FALSE 3.00 76 TRUE FALSE FALSE
2 17 male 72.3 176.0 FALSE 2.61 74 TRUE FALSE FALSE
3 12 male 57.7 158.9 FALSE 4.27 80 TRUE FALSE FALSE
4 16 male 88.9 183.3 FALSE 3.62 58 TRUE FALSE FALSE
5 13 female 45.1 157.6 FALSE 2.66 92 TRUE FALSE FALSE
6 16 female 48.7 180.7 FALSE 4.32 58 FALSE TRUE FALSE
nhanes_imp <- hotdeck(
nhanes,
variable = "Weight",
domain_var = "PhysActive"
)
nhanes_imp <- hotdeck(
nhanes,
variable = "Weight"
ord_var = "Height"
)
Handling Missing Data with Imputations in R