Life Insurance Products Valuation in R
Katrien Antonio, Ph.D.
Professor, KU Leuven and University of Amsterdam
$q_{x,t}$ is now the mortality rate for an $x$-year-old in period $t$.
$$ _kp_{x,t} = p_{x,t} \cdot p_{x+1,t} \cdot \ldots \cdot p_{x+k-1,t} $$
$$ _kp_{x,t} = p_{x,t} \cdot p_{x+1,t+1} \cdot \ldots \cdot p_{x+k-1,t+k-1} $$
head(life_table)
year age qx lx dx ex
1 1841 0 0.16580 100000 16580 40.28
2 1841 1 0.07148 83420 5963 47.22
3 1841 2 0.03905 77457 3025 49.82
4 1841 3 0.02306 74432 1716 50.82
5 1841 4 0.01693 72716 1231 51.01
6 1841 5 0.01233 71485 881 50.88
tail(life_table)
year age qx lx dx ex
19420 2015 105 0.49719 40 20 1.46
19421 2015 106 0.51410 20 10 1.40
19422 2015 107 0.52979 10 5 1.35
19423 2015 108 0.54425 5 3 1.31
19424 2015 109 0.55749 2 1 1.28
19425 2015 110 1.00000 1 1 1.26
Jacques Brel is a Belgian singer who was born in 1929 and died at age 49.
What is the probability $_{49|}q_{0, 1929}$ that a newborn, born in 1929, dies at age 49?
Period or vertical way:
period_life_table <- subset(life_table, year == 1929)
qx <- period_life_table$qx
px <- 1 - qx
prod(px[1:(48 + 1)]) * qx[49 + 1]
0.008456378
Jacques Brel is a Belgian singer who was born in 1929 and died at age 49.
What is the probability $_{49|}q_{0, 1929}$ that a newborn, born in 1929, dies at age 49?
Cohort or diagonal way:
cohort_life_table <- subset(life_table, year - age == 1929)
qx <- cohort_life_table$qx
px <- 1 - qx
prod(px[(0 + 1):(48 + 1)]) * qx[49 + 1]
0.006410343
Life Insurance Products Valuation in R