Life Insurance Products Valuation in R
Katrien Antonio, Ph.D.
Professor, KU Leuven and University of Amsterdam
A life annuity on $(x)$ with benefit vector
$$ (c_0,c_1, \ldots, c_k, \ldots) $$
Sequence of pure endowments:
$$ \sum_{k=0}^{+\infty} c_k \cdot v(k) \cdot {}_kp_x $$
$\quad \, \quad \,$ the EPV.
benefits <- c(500, 400, 300, rep(200, 5))
discount_factors <- (1 + 0.03) ^ - (0:7)
kpx <- c(1, cumprod(px[(65 + 1):(71 + 1)]))
sum(benefits * discount_factors * kpx)
1945.545
Whole life annuity due: pay $c_k$ at beginning of year $(k+1)$.
Whole life immediate annuity: pay $c_k$ at end of year $(k+1)$.
Compute $\ddot{a}_{35}$ (due) for constant interest rate $i = 3\%$
# whole-life annuity due of (35)
kpx <-
c(1, cumprod(px[(35 + 1):length(px)]))
discount_factors <-
(1 + 0.03) ^ - (0:(length(kpx) - 1))
benefits <- rep(1, length(kpx))
sum(benefits * discount_factors * kpx)
24.44234
and $a_{35}$ (immediate)
# whole-life immediate annuity of (35)
kpx <- cumprod(px[(35 + 1):length(px)])
discount_factors <-
(1 + 0.03) ^ - (1:length(kpx))
benefits <- rep(1, length(kpx))
sum(benefits * discount_factors * kpx)
23.44234
Temporary annuity due: maximum of $n$ years, at time $0$ until $n-1$.
Deferred whole life annuity due: no payments in first $u$ years.
Life Insurance Products Valuation in R