Binomial experiments

Life Insurance Products Valuation in R

Roel Verbelen, Ph.D.

Statistician, Finity Consulting

The life table in R

  • life_table contains the period life table for males in Belgium of 2013.
head(life_table, 10)
   age      qx     lx  dx    ex
1    0 0.00381 100000 381 77.95
2    1 0.00047  99619  47 77.24
3    2 0.00019  99572  19 76.28
4    3 0.00015  99553  15 75.30
5    4 0.00013  99538  13 74.31
6    5 0.00010  99525  10 73.32
7    6 0.00011  99514  11 72.32
8    7 0.00008  99504   8 71.33
9    8 0.00011  99496  11 70.34
10   9 0.00008  99485   8 69.34
# Variables used in this video
qx <- life_table$qx
px <- 1 - qx
lx <- life_table$lx
dx <- life_table$dx
Life Insurance Products Valuation in R

A binomial experiment: surviving one year

  • Focus on $\ell_x$ in life_table.
lx[0 + 1]
1e+05 
Life Insurance Products Valuation in R

A binomial experiment: surviving one year

  • The number of survivors up to age $x+1$ follows a BIN($\ell_x$,$\ p_{x}$).
lx[72 + 1]
73977
px[72 + 1]
0.97369
rbinom(n = 1, size = lx[72 + 1], prob = px[72 + 1])
72022
Life Insurance Products Valuation in R

A binomial experiment: surviving one year

  • Now in a vectorized way!
sims <- rbinom(n = length(lx), size = lx, prob = px)
head(sims)
99637 99567 99553 99546 99525 99515
Life Insurance Products Valuation in R

A binomial experiment: surviving $k$ years

  • The number of 1-year survivors follows a BIN($\ell_x$,$\ p_{x}$).
    $\quad \,$ Expected value:
    $$ \ell_{x+1} = \ell_x \cdot p_x. $$

  • The number of $k$-year survivors follows a BIN($\ell_x$,$\ _{k}p_{x}$).

$\quad \,$ Expected value:

$$ \ell_{x+k} = \ell_{x} \cdot \ _{k}p_{x}. $$

$\quad \,$ Thus:

$$ _{k}p_{x} = \frac{\ell_{x+k}}{\ell_{x}}. $$

Life Insurance Products Valuation in R

A binomial experiment: the number of deaths

  • The number of deaths follows a BIN($\ell_x$,$\ q_{x}$).

$\quad \,$ Expected value: $$ \large \begin{aligned} d_x &= \ell_x \cdot q_x \\ &= \ell_x \cdot (1-p_x) \\ &= \ell_x -\ell_{x+1}. \end{aligned} $$

dx[72 + 1]
1946
lx[72 + 1] - lx[73 + 1]
1946
Life Insurance Products Valuation in R

Survival probabilities in R

Compute $_5p_{65} = \dfrac{\ell_{70}}{\ell_{65}}$.

# Probability that (65) survives 5 more years
lx[age == 70] / lx[age == 65]
0.9143957
# Alternatively
lx[70 + 1] / lx[65 + 1]
0.9143957
Life Insurance Products Valuation in R

Picturing survival probabilities in R

# probability that (65) survives to age 65 + k
k <- 0:45
plot(k, 
     lx[65 + k + 1] / lx[65 + 1], 
     pch = 20, 
     xlab = "k", 
     ylab = expression(paste(""[k], "p"[65])))

Life Insurance Products Valuation in R

Let's practice!

Life Insurance Products Valuation in R

Preparing Video For Download...