Life Insurance Products Valuation in R
Katrien Antonio, Ph.D.
Professor, KU Leuven and University of Amsterdam
A life insurance on $(x)$ with death benefit vector
$$ (b_0,b_1, \ldots, b_k, \ldots) $$
Series of one-year contracts:
$$ \sum_{k=0}^{+\infty} b_k \cdot v(k+1) \cdot {}_kp_x \cdot q_{x+k} = \sum_{k=0}^{+\infty} b_k \cdot v(k+1) \cdot {}_{k|}q_{x}$$
$\quad \, \quad \,$ the EPV.
Whole life insurance: lifelong.
Temporary (or: term) life insurance: maximum of $n$ years.
Deferred whole life insurance: no payments in first $u$ years.
Compute $A_{35}$ for constant interest rate $i = 3\%$.
# Whole-life insurance of (35)
kpx <- c(1, cumprod(px[(35 + 1):(length(px) - 1)]))
kqx <- kpx * qx[(35 + 1):length(qx)]
discount_factors <- (1 + 0.03) ^ - (1:length(kqx))
benefits <- rep(1, length(kqx))
sum(benefits * discount_factors * kqx)
0.2880872
Now do ${}_{20|}A_{35}$.
# Deferred whole-life insurance of (35)
kpx <- c(1, cumprod(px[(35 + 1):(length(px) - 1)]))
kqx <- kpx * qx[(35 + 1):length(qx)]
discount_factors <- (1 + 0.03) ^ - (1:length(kqx))
benefits <- c(rep(0, 20), rep(1, length(kqx) - 20))
sum(benefits * discount_factors * kqx)
0.2552956
Life Insurance Products Valuation in R