Cleaning Data in R
Maggie Matsui
Content Developer @ DataCamp
Cross field validation = a sanity check
Does this value make sense based on other values?

head(credit_cards)
  date_opened dining_cb groceries_cb  gas_cb total_cb acct_age
1  2018-07-05     26.08        83.43   78.90   188.41        1
2  2016-01-23   1309.33         4.46 1072.25  2386.04        4
3  2016-03-25    205.84       119.20  800.62  1125.66        4
4  2018-06-20     14.00        16.37   18.41    48.78        1
5  2017-02-08     98.50       283.68  281.70   788.33        3
6  2014-11-18    889.28      2626.34 2973.62  6489.24        5
credit_cards %>% 
  select(dining_cb:total_cb)
   dining_cb groceries_cb  gas_cb total_cb
1      26.08        83.43   78.90   188.41
2    1309.33         4.46 1072.25  2386.04
3     205.84       119.20  800.62  1125.66
4      14.00        16.37   18.41    48.78
5      98.50       283.68  281.70   788.33
6     889.28      2626.34 2973.62  6489.24
credit_cards %>%mutate(theoretical_total = dining_cb + groceries_cb + gas_cb) %>%filter(theoretical_total != total_cb) %>% select(dining_cb:theoretical_total)
  dining_cb groceries_cb  gas_cb total_cb theoretical_total
1     98.50       283.68  281.70   788.33            663.88
2   3387.53       363.85 2706.42  4502.94           6457.80
credit_cards %>%
  select(date_opened, acct_age)
   date_opened acct_age
1   2018-07-05        1
2   2016-01-23        4
3   2016-03-25        4
4   2018-06-20        1
5   2017-02-08        3
6   2014-11-18        5
library(lubridate)
date_difference <- as.Date("2015-09-04") %--% today()
date_difference
2015-09-04 UTC--2020-03-09 UTC
as.numeric(date_difference, "years")
4.511978
floor(as.numeric(date_difference, "years"))
4
credit_cards %>%
  mutate(theor_age = floor(as.numeric(date_opened %--% today(), "years"))) %>%
  filter(theor_age != acct_age)
  date_opened acct_age dining_cb groceries_cb  gas_cb total_cb theor_age
1  2016-03-25        4    814.34       471.58 3167.41  4453.33         3
2  2018-03-06        3    238.48       186.05  213.84   638.37         2

Cleaning Data in R