Uniformity

Cleaning Data in Python

Adel Nehme

Content Developer @ DataCamp

In this chapter

 

 

 

 

 

 

Chapter 3 - Advanced data problems

Cleaning Data in Python

Data range constraints

range_examples

Cleaning Data in Python

Uniformity

Column Unit
Temperature 32°C is also 89.6°F
Weight 70 Kg is also 11 st.
Date 26-11-2019 is also 26, November, 2019
Money 100$ is also 10763.90¥
Cleaning Data in Python

An example

temperatures = pd.read_csv('temperature.csv')
temperatures.head()
       Date  Temperature
0  03.03.19         14.0
1  04.03.19         15.0
2  05.03.19         18.0
3  06.03.19         16.0
4  07.03.19         62.6
Cleaning Data in Python

An example

temperatures = pd.read_csv('temperature.csv')
temperatures.head()
       Date  Temperature
0  03.03.19         14.0
1  04.03.19         15.0
2  05.03.19         18.0
3  06.03.19         16.0
4  07.03.19         62.6   <--
Cleaning Data in Python

An example

# Import matplotlib
import matplotlib.pyplot as plt

# Create scatter plot plt.scatter(x = 'Date', y = 'Temperature', data = temperatures)
# Create title, xlabel and ylabel plt.title('Temperature in Celsius March 2019 - NYC') plt.xlabel('Dates') plt.ylabel('Temperature in Celsius')
# Show plot plt.show()
Cleaning Data in Python

Cleaning Data in Python

Cleaning Data in Python

Treating temperature data

$$C = (F - 32) \times \frac{5}{9}$$

 

temp_fah = temperatures.loc[temperatures['Temperature'] > 40, 'Temperature']

temp_cels = (temp_fah - 32) * (5/9)
temperatures.loc[temperatures['Temperature'] > 40, 'Temperature'] = temp_cels
# Assert conversion is correct
assert temperatures['Temperature'].max() < 40
Cleaning Data in Python

Treating date data

birthdays.head()
          Birthday First name Last name
0         27/27/19      Rowan     Nunez
1         03-29-19      Brynn      Yang
2  March 3rd, 2019     Sophia    Reilly
3         24-03-19     Deacon    Prince
4         06-03-19   Griffith      Neal
Cleaning Data in Python

Treating date data

birthdays.head()

A table showing the output of the birthdays dataset - one row has a date in month, day, year format; another has it written out in full; a final row contains a format that is clearly an error - repeating the day component twice.

Cleaning Data in Python

Datetime formatting

datetime is useful for representing dates

Date datetime format
25-12-2019 %d-%m-%Y
December 25th 2019 %c
12-25-2019 %m-%d-%Y
... ...

pandas.to_datetime()

  • Can recognize most formats automatically
  • Sometimes fails with erroneous or unrecognizable formats
Cleaning Data in Python

Treating date data

# Converts to datetime - but won't work!
birthdays['Birthday'] = pd.to_datetime(birthdays['Birthday'])
ValueError: month must be in 1..12
# Will work!
birthdays['Birthday'] = pd.to_datetime(birthdays['Birthday'],
                                       # Attempt to infer format of each date
                                       infer_datetime_format=True, 
                                       # Return NA for rows where conversion failed
                                       errors = 'coerce')
Cleaning Data in Python

Treating date data

birthdays.head()
    Birthday First name Last name
0        NaT      Rowan     Nunez
1 2019-03-29      Brynn      Yang
2 2019-03-03     Sophia    Reilly
3 2019-03-24     Deacon    Prince
4 2019-06-03   Griffith      Neal
Cleaning Data in Python

Treating date data

birthdays['Birthday'] = birthdays['Birthday'].dt.strftime("%d-%m-%Y")
birthdays.head()
     Birthday First name Last name
0         NaT      Rowan     Nunez
1  29-03-2019      Brynn      Yang
2  03-03-2019     Sophia    Reilly
3  24-03-2019     Deacon    Prince
4  03-06-2019   Griffith      Neal
Cleaning Data in Python

Treating ambiguous date data

 

Is 2019-03-08 in August or March?

   

  • Convert to NA and treat accordingly
  • Infer format by understanding data source
  • Infer format by understanding previous and subsequent data in DataFrame
Cleaning Data in Python

Let's practice!

Cleaning Data in Python

Preparing Video For Download...