Data range constraints

Cleaning Data in Python

Adel Nehme

Content Developer @ DataCamp

Motivation

movies.head()
     movie_name     avg_rating
0    The Godfather           5
1    Frozen 2                3
2    Shrek                   4
...    
Cleaning Data in Python

Motivation

import matplotlib.pyplot as plt
plt.hist(movies['avg_rating'])
plt.title('Average rating of movies (1-5)')

heart_rate_normal

Cleaning Data in Python

Motivation

Can future sign-ups exist?

# Import date time
import datetime as dt
today_date = dt.date.today()
user_signups[user_signups['subscription_date'] > dt.date.today()]
   subscription_date  user_name         ...             Country
0         01/05/2021      Marah         ...             Nauru
1         09/08/2020     Joshua         ...             Austria
2         04/01/2020      Heidi         ...             Guinea
3         11/10/2020       Rina         ...             Turkmenistan
4         11/07/2020  Christine         ...             Marshall Islands
5         07/07/2020     Ayanna         ...             Gabon

Cleaning Data in Python

How to deal with out of range data?

  • Dropping data
  • Setting custom minimums and maximums
  • Treat as missing and impute
  • Setting custom value depending on business assumptions
Cleaning Data in Python

Movie example

import pandas as pd
# Output Movies with rating > 5
movies[movies['avg_rating'] > 5]
         movie_name  avg_rating
23  A Beautiful Mind           6
65   La Vita e Bella           6
77            Amelie           6
# Drop values using filtering
movies = movies[movies['avg_rating'] <= 5]

# Drop values using .drop() movies.drop(movies[movies['avg_rating'] > 5].index, inplace = True)
# Assert results assert movies['avg_rating'].max() <= 5
Cleaning Data in Python

Movie example

# Convert avg_rating > 5 to 5
movies.loc[movies['avg_rating'] > 5, 'avg_rating'] = 5
# Assert statement
assert movies['avg_rating'].max() <= 5

Remember, no output means it passed

Cleaning Data in Python

Date range example

import datetime as dt
import pandas as pd
# Output data types
user_signups.dtypes
subscription_date    object
user_name            object
Country              object
dtype: object
# Convert to date
user_signups['subscription_date'] = pd.to_datetime(user_signups['subscription_date']).dt.date
Cleaning Data in Python

Date range example

today_date = dt.date.today()

Drop the data

# Drop values using filtering
user_signups = user_signups[user_signups['subscription_date'] < today_date]

# Drop values using .drop() user_signups.drop(user_signups[user_signups['subscription_date'] > today_date].index, inplace = True)

Hardcode dates with upper limit

# Drop values using filtering
user_signups.loc[user_signups['subscription_date'] > today_date, 'subscription_date'] = today_date
# Assert is true
assert user_signups.subscription_date.max().date() <= today_date
Cleaning Data in Python

Let's practice!

Cleaning Data in Python

Preparing Video For Download...