Introduction to Regression in R
Richie Cotton
Data Evangelist at DataCamp
n_claims | total_payment_sek |
---|---|
108 | 392.5 |
19 | 46.2 |
13 | 15.7 |
124 | 422.2 |
40 | 119.4 |
... | ... |
library(dplyr)
swedish_motor_insurance %>%
summarize_all(mean)
# A tibble: 1 x 2
n_claims total_payment_sek
<dbl> <dbl>
1 22.9 98.2
swedish_motor_insurance %>%
summarize(
correlation = cor(n_claims, total_payment_sek)
)
# A tibble: 1 x 1
correlation
<dbl>
1 0.881
n_claims | total_payment_sek |
---|---|
108 | 392.5 |
19 | 46.2 |
13 | 15.7 |
124 | 422.2 |
40 | 119.4 |
200 | ??? |
The variable that you want to predict.
The variables that explain how the response variable will change.
library(ggplot2)
ggplot(
swedish_motor_insurance,
aes(n_claims, total_payment_sek)
) +
geom_point()
library(ggplot2)
ggplot(
swedish_motor_insurance,
aes(n_claims, total_payment_sek)
) +
geom_point() +
geom_smooth(
method = "lm",
se = FALSE
)
Visualizing and fitting linear regression models.
Making predictions from linear regression models and understanding model coefficients.
Assessing the quality of the linear regression model.
Same again, but with logistic regression models
Introduction to Regression in R