Intermediate Regression in R
Richie Cotton
Data Evangelist at DataCamp
The effect of length on the expected mass is different for different species.
The effect of one explanatory variable on the expected response changes depending on the value of another explanatory variable.
response ~ explntry1 + explntry2
response_var ~ explntry1 * explntry2
response ~ explntry1 + explntry2 + explntry1:explntry2
mass_g ~ length_cm + species
mass_g ~ length_cm * species
mass_g ~ length_cm + species + length_cm:species
lm(mass_g ~ length_cm * species, data = fish)
Call:
lm(formula = mass_g ~ length_cm * species, data = fish)
Coefficients:
(Intercept) length_cm speciesPerch speciesPike
-1035.348 54.550 416.172 -505.477
speciesRoach length_cm:speciesPerch length_cm:speciesPike length_cm:speciesRoach
705.971 -15.639 -1.355 -31.231
mdl_inter <- lm(mass_g ~ species + species:length_cm + 0, data = fish)
Call:
lm(formula = mass_g ~ species + species:length_cm + 0, data = fish)
Coefficients:
speciesBream speciesPerch speciesPike speciesRoach
-1035.35 -619.18 -1540.82 -329.38
speciesBream:length_cm speciesPerch:length_cm speciesPike:length_cm speciesRoach:length_cm
54.55 38.91 53.19 23.32
speciesBream speciesPerch speciesPike speciesRoach
-1035.35 -619.18 -1540.82 -329.38
speciesBream:length_cm speciesPerch:length_cm speciesPike:length_cm speciesRoach:length_cm
54.55 38.91 53.19 23.32
coefficients(mdl_bream)
(Intercept) length_cm
-1035.34757 54.54998
Intermediate Regression in R