Building Recommendation Engines in Python
Rob O'Callaghan
Director of Data
actual_values = act_ratings_df.iloc[:20, :100].values
act_ratings_df.iloc[:20, :100] = np.nan
Generate predictions as before.
predicted_values = calc_pred_ratings_df.iloc[:20, :100].values
mask = ~np.isnan(actual_values)
print(actual_values[mask])
[4. 4. 5. 3. 3. ...]
print(predicted_values[mask])
[3.76, 4.35, 4.95, 3.5869079 3.686337 ...]
from sklearn.metrics import mean_squared_error
print(mean_squared_error(actual_values[mask],
predicted_values[mask],
squared=False))
3.6223997
Building Recommendation Engines in Python