Bayesian Data Analysis in Python
Michal Oleszak
Machine Learning Engineer
What will the bear do next:
hunt | eat | sleep | |
---|---|---|---|
hunt | 0.1 | 0.8 | 0.1 |
eat | 0.05 | 0.4 | 0.55 |
sleep | 0.8 | 0.15 | 0.05 |
What will the bear do next:
hunt | eat | sleep | |
---|---|---|---|
hunt | 0.1 | 0.8 | 0.1 |
eat | 0.05 | 0.4 | 0.55 |
sleep | 0.8 | 0.15 | 0.05 |
What will the bear do in a distant future:
hunt | eat | sleep | |
---|---|---|---|
hunt | 0.28 | 0.44 | 0.28 |
eat | 0.28 | 0.44 | 0.28 |
sleep | 0.28 | 0.44 | 0.28 |
print(ads_aggregated)
date clothes_banners_shown sneakers_banners_shown num_clicks
0 2019-01-01 20 18 2
1 2019-01-02 24 19 8
2 2019-01-03 20 20 5
.. ... ... ... ...
148 2019-05-29 24 25 8
149 2019-05-30 26 27 11
150 2019-05-31 26 24 8
[151 rows x 4 columns]
formula = "num_clicks ~ clothes_banners_shown + sneakers_banners_shown"
with pm.Model() as model: pm.GLM.from_formula(formula, data=ads_aggregated)
# Print model specification print(model)
# Sample posterior draws trace = pm.sample(draws=1000, tune=500)
Bayesian Data Analysis in Python