Introduction to Data Visualization with Plotly in Python
Alex Scriven
Data Scientist
How to customize plots:
color
)update_layout()
fig.update_layout({"title":{"text":"A New Title"}})
Customizing color can help:
Computers use RGB encoding to specify colors:
$$
$$
See more in this article
color
argument (DataFrame column)
fig = px.bar(data_frame=student_scores,
x="student_name",
y="score",
title="Student Scores by Student"
color="city")
fig.show()
The plot before:
Our plot after:
Using plotly.express
color
argument with univariate (bar, histogram) plots:
color_discrete_map
: A dictionary that maps categorical values to colors"red"
, "green"
etc.$$
fig = px.bar( data_frame=student_scores, x="student_name", y="score", title="Student Scores by Student",
color_discrete_map={ "Melbourne": "rgb(0,0,128)", "Sydney": "rgb(235, 207, 52)"},
color="city")
$$
color_continuous_scale
argument for color scales.
fig = px.bar(data_frame=weekly_temps,
x="day", y="temp",
color="temp",
color_continuous_scale="inferno")
fig.show()
$$
my_scale=[("rgb(242, 238, 10)"), ("rgb(242, 95, 10)"), ("rgb(255,0,0)")]
fig = px.bar(data_frame=weekly_temps, x="day", y="temp",
color_continuous_scale=my_scale, color="temp")
Introduction to Data Visualization with Plotly in Python