Introduction to Data Visualization with Plotly in Python
Alex Scriven
Data Scientist
Custom buttons can:
Update the data or layout elements of a plot
update_layout()
customizations could be in a button!Assist with animations (beyond the scope of this course)
Added via an updatemenus
argument with arguments:
type
: buttons
or dropdown
direction
: Button orientationleft
) or on top of (down
) each otherx
/y
: Floats to set the button positionsshowactive
: True
/False
to show the active
(index of button) as pressed or not.buttons
: A list of button
objects$$
fig = px.bar(
data_frame=revenues,
x='Industry', y='Revenue',
color='Industry')
fig.show()
my_buttons = [
{'label': "Bar plot",
'method': "update",
'args': [{"type": "bar"}]},
{'label': "scatterplot",
'method': "update",
'args': [{"type": "scatter", 'mode': 'markers'}]}
]
One of the most confusing parts of Plotly!
[{dictionary to send to data}, {dictionary to send to layout}]
dir(fig.layout)
'args'
dir(fig.data[0])
$$
fig.update_layout({ 'updatemenus': [{'type': "buttons",
'direction': 'down', 'x': 1.3, 'y': 0.5,
'showactive': True, 'active': 0,
'buttons': my_buttons}] }) fig.show()
$$
Introduction to Data Visualization with Plotly in Python