Trend indicator MAs

Financial Trading in Python

Chelsea Yang

Data Science Instructor

What are technical indicators?

  • Mathematical calculations based on historical market data
  • Assume the market is efficient and the price has incorporated all public information
  • Help traders to gain insight into past price patterns
Financial Trading in Python

Types of indicators

  • Trend indicators: measure the direction or strength of a trend
    • Example: Moving averages (MA), Average Directional Movement Index (ADX)
  • Momentum indicators: measure the velocity of price movement
    • Example: Relative Strength Index (RSI)
  • Volatility indicators: measure the magnitude of price deviations
    • Example: Bollinger Bands
Financial Trading in Python

The TA-Lib package

TA-Lib : Technical Analysis Library

  • Includes 150+ technical indicator implementations
import talib
Financial Trading in Python

Moving average indicators

  • SMA: Simple Moving average
  • EMA: Exponential Moving Average

 

  • Characteristics:
    • Move with the price
    • Smooth out the data to better indicate the price direction
Financial Trading in Python

Simple Moving Average (SMA)

$ SMA = (P_1+P_2+...+P_n)/n $

# Calculate two SMAs
stock_data['SMA_short'] = talib.SMA(stock_data['Close'], timeperiod=10)
stock_data['SMA_long'] = talib.SMA(stock_data['Close'], timeperiod=50)

# Print the last five rows print(stock_data.tail())
             Close  SMA_short  SMA_long
Date                                   
2020-11-24 1768.88    1758.77   1594.74
2020-11-25 1771.43    1760.65   1599.75
2020-11-27 1793.19    1764.98   1605.70
2020-11-30 1760.74    1763.35   1611.71
2020-12-01 1798.10    1765.02   1619.05

Financial Trading in Python

Plotting the SMA

import matplotlib.pyplot as plt

# Plot SMA with the price
plt.plot(stock_data['SMA_short'], 
         label='SMA_short')
plt.plot(stock_data['SMA_long'], 
         label='SMA_long')
plt.plot(stock_data['Close'], 
         label='Close')

# Customize and show the plot
plt.legend()
plt.title('SMAs')
plt.show()

SMAs plot

Financial Trading in Python

Exponential Moving Average (EMA)

$EMA_n = P_n \times multiplier + \text{previous EMA} \times (1-multiplier)$

$multiplier = 2 / (n + 1)$

# Calculate two EMAs
stock_data['EMA_short'] = talib.EMA(stock_data['Close'], timeperiod=10)
stock_data['EMA_long'] = talib.EMA(stock_data['Close'], timeperiod=50)
# Print the last five rows
print(stock_data.tail())
             Close  EMA_short  EMA_long
Date                                   
2020-11-24 1768.88    1748.65   1640.98
2020-11-25 1771.43    1752.79   1646.09
2020-11-27 1793.19    1760.13   1651.86
2020-11-30 1760.74    1760.24   1656.13
2020-12-01 1798.10    1767.13   1661.70
Financial Trading in Python

Plotting the EMA

import matplotlib.pyplot as plt
# Plot EMA with the price
plt.plot(stock_data['EMA_short'], 
         label='EMA_short')
plt.plot(stock_data['EMA_long'], 
         label='EMA_long')
plt.plot(stock_data['Close'], 
         label='Close')

# Customize and show the plot
plt.legend()
plt.title('EMAs')
plt.show()

EMA plot

Financial Trading in Python

SMA vs. EMA

EMA is more sensitive to the most recent price movement

A plot to show SMA vs EMA calculated with the same lookback window

Financial Trading in Python

Let's practice!

Financial Trading in Python

Preparing Video For Download...