Statistical Techniques in Tableau
Maarten Van den Broeck
Content Developer at DataCamp
| Statistic | Description | 
|---|---|
| Count | number of observations | 
| Median | midpoint of your observations | 
| Average | mean value of your observations | 
| Min/Max | lowest and highest value | 
| Quartile/IQR | 25th and 75th percentile / spread of the 50% of your middlemost observations | 
| Modality/Mode | number of modes / most occurring value | 
| Skewness | (a)symmetry of the distribution | 
| Kurtosis | distribution of extreme values | 

$x_{i} - \overline{x}$
$(x_{i} - \overline{x})^2$
$\sum(x_{i} - \overline{x})^2$
$\frac{\sum(x_{i} - \overline{x})^2}{n - 1}$
$x_i$ = individual data point, $\overline{x}$ = sample mean
$n$ = number of observations
$s = \sqrt{\frac{\sum(x_{i} - \overline{x})^2}{n - 1}}$ or $s = \sqrt{variance}$




Sample variance $s^2$
$s^2 = \frac{\sum(x_{i} - \overline{x})^2}{n - 1}$
data per country (sample) generalize for Europe (population)
Sample standard deviation $s$
$s = \sqrt{\frac{\sum(x_{i} - \overline{x})^2}{n - 1}}$ $\overline{x}$ = sample mean
$n$ = sample size
Population variance $\sigma$
$\sigma^2 = \frac{\sum(x_{i} - \mu)^2}{N}$
data of your university (population) no need for generalizing
Population standard deviation $\sigma^2$
$\sigma = \sqrt{\frac{\sum(x_{i} - \mu)^2}{N}}$ $\mu$ = population mean
$N$ = population size
Sample variance $s^2$
$s^2 = \frac{\sum(x_{i} - \overline{x})^2}{\textbf{n - 1}}$
data per country (sample) generalize for Europe (population)
Sample standard deviation $s$
$s = \sqrt{\frac{\sum(x_{i} - \overline{x})^2}{\textbf{n - 1}}}$ $\overline{x}$ = sample mean
$n$ = sample size
Population variance $\sigma^2$
$\sigma^2 = \frac{\sum(x_{i} - \mu)^2}{\textbf{N}}$
data of your university (population) no need for generalizing
Population standard deviation $\sigma$
$\sigma = \sqrt{\frac{\sum(x_{i} - \mu)^2}{\textbf{N}}}$ $\mu$ = population mean
$N$ = population size
Statistical Techniques in Tableau