Interactive Data Visualization with Bokeh
George Boorman
Core Curriculum Manager, DataCamp
source = ColumnDataSource(data=apple) fig = figure(x_axis_label="Date", y_axis_label="Market Cap ($)") fig.line(x="date", y="market_cap", source=source)output_file(filename="unformatted_plot.html") show(fig)

source = ColumnDataSource(data=apple) fig = figure(x_axis_label="Date", y_axis_label="Market Cap ($)",x_axis_type="datetime")fig.line(x="date", y="market_cap", source=source) output_file(filename="unformatted_plot.html") show(fig)

format| Value | format | Output |
|---|---|---|
1500.00 |
"$0.00" |
$1500.00 |
2000.00 |
"$0" |
$2000 |
5000.00 |
"$0,0" |
$5,000 |
1100000 |
"$0.0a" |
$1.1m |
5000000000 |
"$0a |
$5b |
months| Value | months | Output |
|---|---|---|
"2018-03-01" |
"%B %Y" |
"March 2018" |
"2019-10-15" |
"%b %Y" |
"Oct 2019" |
"2020-02-09" |
"%b %y" |
"Feb 20" |
microseconds, milliseconds, seconds, minisec, minutes, hourmin, hours, days, yearsfrom bokeh.models import NumeralTickFormatterfig = figure(x_axis_label="Date", y_axis_label="Price ($)") fig.line(x="date", y="market_cap", source=source)fig.yaxis[0].formatter = NumeralTickFormatter(format="$0.0a")output_file(filename="formatted_y_axis.html") show(fig)

from bokeh.models import NumeralTickFormatter, DatetimeTickFormatterfig = figure(x_axis_label="Date", y_axis_label="Price ($)") fig.line(x="date", y="price", source=source) fig.yaxis[0].formatter = NumeralTickFormatter(format="$0.0a")fig.xaxis[0].formatter = DatetimeTickFormatter(months="%b %Y")output_file(filename="formatted_market_cap.html") show(fig)

Interactive Data Visualization with Bokeh