Sampling in Python
James Chapman
Curriculum Manager, DataCamp
{adjective} made, done, happening, or chosen without method or conscious decision.
seed = 1
calc_next_random(seed)
3
calc_next_random(3)
2
calc_next_random(2)
6
numpy.random
, such as numpy.random.beta()
function | distribution | function | distribution |
---|---|---|---|
.beta | Beta | .hypergeometric | Hypergeometric |
.binomial | Binomial | .lognormal | Lognormal |
.chisquare | Chi-squared | .negative_binomial | Negative binomial |
.exponential | Exponential | .normal | Normal |
.f | F | .poisson | Poisson |
.gamma | Gamma | .standard_t | t |
.geometric | Geometric | .uniform | Uniform |
randoms = np.random.beta(a=2, b=2, size=5000)
randoms
array([0.6208281 , 0.73216171, 0.44298403, ...,
0.13411873, 0.52198411, 0.72355098])
plt.hist(randoms, bins=np.arange(0, 1, 0.05))
plt.show()
np.random.seed(20000229)
np.random.normal(loc=2, scale=1.5, size=2)
array([-0.59030264, 1.87821258])
np.random.normal(loc=2, scale=1.5, size=2)
array([2.52619561, 4.9684949 ])
np.random.seed(20000229)
np.random.normal(loc=2, scale=1.5, size=2)
array([-0.59030264, 1.87821258])
np.random.normal(loc=2, scale=1.5, size=2)
array([2.52619561, 4.9684949 ])
np.random.seed(20000229)
np.random.normal(loc=2, scale=1.5, size=2)
array([-0.59030264, 1.87821258])
np.random.normal(loc=2, scale=1.5, size=2)
array([2.52619561, 4.9684949 ])
np.random.seed(20041004)
np.random.normal(loc=2, scale=1.5, size=2)
array([1.09364337, 4.55285159])
np.random.normal(loc=2, scale=1.5, size=2)
array([2.67038916, 2.36677492])
Sampling in Python