Introduction to NumPy
Izzy Weber
Core Curriculum Manager, DataCamp
np.arange(1000000).sum()
499999500000
array = np.array([[1, 2, 3], [4, 5, 6]])
for row in range(array.shape[0]):
for column in range(array.shape[1]):
array[row][column] += 3
array([[4, 5, 6],
[7, 8, 9]])
array = np.array([[1, 2, 3], [4, 5, 6]])
array + 3
array([[4, 5, 6],
[7, 8, 9]])
array = np.array([[1, 2, 3], [4, 5, 6]])
array * 3
array([[ 3, 6, 9],
[12, 15, 18]])
array_a = np.array([[1, 2, 3], [4, 5, 6]])
array_b = np.array([[0, 1, 0], [1, 0, 1]])
array_a + array_b
array([[1, 3, 3],
[5, 5, 7]])
array_a = np.array([[1, 2, 3], [4, 5, 6]])
array_b = np.array([[0, 1, 0], [1, 0, 1]])
array_a * array_b
array([[0, 2, 0],
[4, 0, 6]])
array = np.array([[1, 2, 3], [4, 5, 6]])
array > 2
array([[False, False, True],
[True, True, True]])
array = np.array(["NumPy", "is", "awesome"])
len(array) > 2
True
vectorized_len = np.vectorize(len)
vectorized_len(array) > 2
array([ True, False, True])
Introduction to NumPy