Introduction to Statistics
George Boorman
Curriculum Manager, DataCamp




Expected value: The mean of a probability distribution
Expected value of a fair die roll = $(1 \times \frac{1}{6}) + (2 \times \frac{1}{6}) +(3 \times \frac{1}{6}) +(4 \times \frac{1}{6}) +(5 \times \frac{1}{6}) +(6 \times \frac{1}{6}) = 3.5$


$$P(\text{die roll}) \le 2 = ~?$$

$$P(\text{die roll}) \le 2 = 1/3$$


Expected value of uneven die roll = $(1 \times \frac{1}{6}) +(2 \times 0) +(3 \times \frac{1}{3}) +(4 \times \frac{1}{6}) +(5 \times \frac{1}{6}) +(6 \times \frac{1}{6}) = 3.67$

$$P(\text{uneven die roll}) \le 2 = ~?$$

$$P(\text{uneven die roll}) \le 2 = 1/6$$

Describe probabilities for discrete outcomes

Discrete uniform distribution

| Roll | Result |
|---|---|
| 1 | 1 |
| 2 | 2 |
| 3 | 3 |
| 4 | 4 |
| 5 | 5 |
| 6 | 6 |
$ {Mean} = 3.5 $
| Roll | Result |
|---|---|
| 1 | 3 |
| 2 | 1 |
| 3 | 2 |
| 4 | 4 |
| 5 | 6 |
| 6 | 3 |
| 7 | 2 |
| 8 | 2 |
| 9 | 2 |
| 10 | 5 |


$ {Mean} = 3.0 $

$ {Mean} = 3.5 $

$ {Mean} = 3.33 $

$ {Mean} = 3.52 $
As the size of your sample increases, the sample mean will approach the expected value.
| Sample size | Mean |
|---|---|
| 10 | 3.00 |
| 100 | 3.33 |
| 1000 | 3.52 |
Introduction to Statistics