Introduction to Statistics
George Boorman
Curriculum Manager, DataCamp
Expected value: The mean of a probability distribution
Expected value of a fair die roll = $(1 \times \frac{1}{6}) + (2 \times \frac{1}{6}) +(3 \times \frac{1}{6}) +(4 \times \frac{1}{6}) +(5 \times \frac{1}{6}) +(6 \times \frac{1}{6}) = 3.5$
$$P(\text{die roll}) \le 2 = ~?$$
$$P(\text{die roll}) \le 2 = 1/3$$
Expected value of uneven die roll = $(1 \times \frac{1}{6}) +(2 \times 0) +(3 \times \frac{1}{3}) +(4 \times \frac{1}{6}) +(5 \times \frac{1}{6}) +(6 \times \frac{1}{6}) = 3.67$
$$P(\text{uneven die roll}) \le 2 = ~?$$
$$P(\text{uneven die roll}) \le 2 = 1/6$$
Describe probabilities for discrete outcomes
Discrete uniform distribution
Roll | Result |
---|---|
1 | 1 |
2 | 2 |
3 | 3 |
4 | 4 |
5 | 5 |
6 | 6 |
$ {Mean} = 3.5 $
Roll | Result |
---|---|
1 | 3 |
2 | 1 |
3 | 2 |
4 | 4 |
5 | 6 |
6 | 3 |
7 | 2 |
8 | 2 |
9 | 2 |
10 | 5 |
$ {Mean} = 3.0 $
$ {Mean} = 3.5 $
$ {Mean} = 3.33 $
$ {Mean} = 3.52 $
As the size of your sample increases, the sample mean will approach the expected value.
Sample size | Mean |
---|---|
10 | 3.00 |
100 | 3.33 |
1000 | 3.52 |
Introduction to Statistics