Introduction to Julia
James Fulton
Climate informatics researcher
Day | Distance | Time | Raining | |
---|---|---|---|---|
1 | Wednesday | 2000 | 14.99 | true |
2 | Monday | 5000 | 31.68 | false |
3 | Thursday | 3500 | 22.02 | true |
4 | Tuesday | 3000 | 17.25 | true |
5 | Thursday | 4500 | 25.47 | false |
6 | Monday | 5000 | 30.77 | true |
Day | Distance | Time | Raining | |
---|---|---|---|---|
1 | Wednesday | 2000 | 14.99 | true |
2 | Monday | 5000 | 31.68 | false |
3 | Thursday | 3500 | 22.02 | true |
4 | Tuesday | 3000 | 17.25 | true |
5 | Thursday | 4500 | 25.47 | false |
6 | Monday | 5000 | 30.77 | true |
String | Int | Float | Bool |
using DataFrames
# Create DataFrame
df = DataFrames.DataFrame(
)
using DataFrames
# Create DataFrame df = DataFrame(
day = ["Wednesday", "Monday", "Thursday", "Tuesday", "Thursday", "Monday"]
distance = [2000, 5000, 3500, 3000, 4500, 5000] time = [14.99, 31.68, 22.02, 17.25, 25.47, 30.77] raining = [true, false, true, true, false, true]
)
using DataFrames
# Create DataFrame df = DataFrame(
day = ["Wednesday", "Monday", "Thursday", "Tuesday", "Thursday", "Monday"], distance = [2000, 5000, 3500, 3000, 4500, 5000], time = [14.99, 31.68, 22.02, 17.25, 25.47, 30.77], raining = [true, false, true, true, false, true], )
println(df)
6×4 DataFrame
Row | day distance time raining
| String Int64 Float64 Bool
_____|______________________________________
1 | Wednesday 2000 14.99 true
2 | Monday 5000 31.68 false
3 | Thursday 3500 22.02 true
4 | Tuesday 3000 17.25 true
5 | Thursday 4500 25.47 false
6 | Monday 5000 30.77 true
Inside run.csv
:
day,distance,time,raining
Wednesday,2000,14.99,true
Monday,5000,31.68,false
Thursday,3500,22.02,true
Tuesday,3000,17.25,true
Thursday,4500,25.47,false
Monday,5000,30.77,true
using CSV
# Load the run data file = CSV.File("run.csv")
# Convert the CSV file into the DataFrame df = DataFrame(file)
File("run.csv")
only CSV.File("run.csv")
# Print the first 3 rows
println(first(df, 3))
3×4 DataFrame
Row | day distance time raining
| String Int64 Float64 Bool
_____|______________________________________
1 | Wednesday 2000 14.99 true
2 | Monday 5000 31.68 false
3 | Thursday 3500 22.02 true
# Print column names
println(names(df))
["day", "distance", "time", "raining"]
# Print number of rows and columns
println(size(df))
(6, 4)
Introduction to Julia