Introduction to Julia
James Fulton
Climate informatics researcher
6×4 DataFrame
Row | day distance time raining
| String Int64 Float64 Bool
_____|__________________________________
1 | Wednesday 2000 14.99 true
2 | Monday 5000 31.68 false
3 | Thursday 3500 22.02 true
4 | Tuesday 3000 17.25 true
5 | Thursday 4500 25.47 false
6 | Monday 5000 30.77 true
6×4 DataFrame
Row | day distance time raining
| String Int64 Float64 Bool
_____|__________________________________
1 | Wednesday 2000 14.99 true
2 | Monday 5000 31.68 false
...
# Filter to Monday runs
df_monday = filter(row -> row.day=="Monday", df_run)
println(df_monday)
6×4 DataFrame
Row | day distance time raining
| String Int64 Float64 Bool
_____|__________________________________
1 | Monday 5000 31.68 false
2 | Monday 5000 30.77 true
# Filter to shorter runs df_short = filter(row -> row.distance<=3000, df_run)println(df_short)
Row | day distance time raining
_____|__________________________________
1 | Wednesday 2000 14.99 true
2 | Tuesday 3000 17.25 true
# Filter to raining days
df_raining = filter(row -> row.raining, df_run)
println(df_raining)
Row | day distance time raining
_____|__________________________________
1 | Wednesday 2000 14.99 true
2 | Thursday 3500 22.02 true
3 | Tuesday 3000 17.25 true
4 | Monday 5000 30.77 true
row.col == b filter to where row.col equals brow.col != b filter to where row.col does not equal brow.col > b filter to where row.col is greater than brow.col >= b filter to where row.col is greater than or equal to brow.col < b filter to where row.col is less than brow.col <= b filter to where row.col is less than or equal to brow.col filter to where row.col is true# Distance run in rain
println(sum(df_raining.time))
13500
Introduction to Julia