Introduction to Julia
James Fulton
Climate informatics researcher
df_run = DataFrame(CSV.File("run.csv"))
println(df_run)
6×4 DataFrame
Row | day distance time raining
| String Int64 Float64 Bool
_____|__________________________________
1 | Wednesday 2000 14.99 true
2 | Monday 5000 31.68 false
3 | Thursday 3500 22.02 true
4 | Tuesday 3000 17.25 true
5 | Thursday 4500 25.47 false
6 | Monday 5000 30.77 true
# df[rownum, colnum]
t = df_run[6, 3]
println(t)
30.77
# df[rowrange, colnum] ts = df_run[5:6, 3]
println(ts)
[25.47, 30.77]
df_run = DataFrame(CSV.File("run.csv"))
println(df_run)
6×4 DataFrame
Row | day distance time raining
| String Int64 Float64 Bool
_____|__________________________________
1 | Wednesday 2000 14.99 true
2 | Monday 5000 31.68 false
3 | Thursday 3500 22.02 true
4 | Tuesday 3000 17.25 true
5 | Thursday 4500 25.47 false
6 | Monday 5000 30.77 true
# df[rownum, colnum]
t = df_run[6, 3]
println(t)
30.77
# df[rowrange, colnum]
ts = df_run[end-1:end, 3]
println(ts)
[25.47, 30.77]
df_run = DataFrame(CSV.File("run.csv"))
println(df_run)
6×4 DataFrame
Row | day distance time raining
| String Int64 Float64 Bool
_____|__________________________________
1 | Wednesday 2000 14.99 true
2 | Monday 5000 31.68 false
3 | Thursday 3500 22.02 true
4 | Tuesday 3000 17.25 true
5 | Thursday 4500 25.47 false
6 | Monday 5000 30.77 true
# df[:, colnum]
distances = df_run[:, 2]
println(distances)
[2000, 5000, 3500, 3000, 4500, 5000]
df_run = DataFrame(CSV.File("run.csv"))
println(df_run)
6×4 DataFrame
Row | day distance time raining
| String Int64 Float64 Bool
_____|__________________________________
1 | Wednesday 2000 14.99 true
2 | Monday 5000 31.68 false
3 | Thursday 3500 22.02 true
4 | Tuesday 3000 17.25 true
5 | Thursday 4500 25.47 false
6 | Monday 5000 30.77 true
# df[:, colnum]
distances = df_run[:, 2]
# df[:, "colname"]
distances = df_run[:, "distance"]
# df.colname
distances = df_run.distance
println(distances)
[2000, 5000, 3500, 3000, 4500, 5000]
df_run = DataFrame(CSV.File("run.csv"))
println(df_run)
6×4 DataFrame
Row | day distance time raining
| String Int64 Float64 Bool
_____|__________________________________
1 | Wednesday 2000 14.99 true
2 | Monday 5000 31.68 false
3 | Thursday 3500 22.02 true
4 | Tuesday 3000 17.25 true
5 | Thursday 4500 25.47 false
6 | Monday 5000 30.77 true
# df[rownum, colnum]
d = df_run[6, 2]
# df[rownum, "colname"]
d = df_run[6, "distance"]
# df.colname[rownum]
d = df_run.distance[6]
println(d)
5000
df_run = DataFrame(CSV.File("run.csv"))
println(df_run)
6×4 DataFrame
Row | day distance time raining
| String Int64 Float64 Bool
_____|__________________________________
1 | Wednesday 2000 14.99 true
2 | Monday 5000 31.68 false
3 | Thursday 3500 22.02 true
4 | Tuesday 3000 17.25 true
5 | Thursday 4500 25.47 false
6 | Monday 5000 30.77 true
df_3cols = df_run[:, 1:3]
println(df_3cols)
6×3 DataFrame
Row | day distance time
| String Int64 Float64
_____|__________________________
1 | Wednesday 2000 14.99
2 | Monday 5000 31.68
3 | Thursday 3500 22.02
4 | Tuesday 3000 17.25
5 | Thursday 4500 25.47
6 | Monday 5000 30.77
df_run = DataFrame(CSV.File("run.csv"))
println(df_run)
6×4 DataFrame
Row | day distance time raining
| String Int64 Float64 Bool
_____|__________________________________
1 | Wednesday 2000 14.99 true
2 | Monday 5000 31.68 false
3 | Thursday 3500 22.02 true
4 | Tuesday 3000 17.25 true
5 | Thursday 4500 25.47 false
6 | Monday 5000 30.77 true
# df[rownum, :]
println(df_run[4, :])
DataFrameRow
Row | day distance time raining
_____|__________________________________
4 | Tuesday 3000 17.25 true
df_run = DataFrame(CSV.File("run.csv"))
println(df_run)
6×4 DataFrame
Row | day distance time raining
| String Int64 Float64 Bool
_____|__________________________________
1 | Wednesday 2000 14.99 true
2 | Monday 5000 31.68 false
3 | Thursday 3500 22.02 true
4 | Tuesday 3000 17.25 true
5 | Thursday 4500 25.47 false
6 | Monday 5000 30.77 true
# df[rowrange, :]
println(df_run[2:4, :])
3×4 DataFrame
Row | day distance time raining
| String Int64 Float64 Bool
_____|__________________________________
1 | Monday 5000 31.68 false
2 | Thursday 3500 22.02 true
3 | Tuesday 3000 17.25 true
df_sort = sort(df_run, "time")
println(df_sort)
6×4 DataFrame
Row | day distance time raining
| String Int64 Float64 Bool
_____|__________________________________
1 | Wednesday 2000 14.99 true
2 | Tuesday 3000 17.25 true
3 | Thursday 3500 22.02 true
4 | Thursday 4500 25.47 false
5 | Monday 5000 30.77 true
6 | Monday 5000 31.68 false
df_sort = sort(df_run, "time", rev=true)
println(df_sort)
6×4 DataFrame
Row | day distance time raining
| String Int64 Float64 Bool
_____|___________________________________
1 | Monday 5000 31.68 false
2 | Monday 5000 30.77 true
3 | Thursday 4500 25.47 false
4 | Thursday 3500 22.02 true
5 | Tuesday 3000 17.25 true
6 | Wednesday 2000 14.99 true
df[:, "colname"]
df[:, colnum]
df.colname
df[rownum, :]
df[:, colnum1:colnum2]
df[rownum1:rownum2, :]
df[rownum, "colname"]
df[rownum, colnum]
df.colname[rownum]
Ascending order
sort(df, "colname")
Descending order
sort(df, "colname", rev=true)
Introduction to Julia