Anomaly Detection in Python
Bekhruz (Bex) Tuychiev
Kaggle Master, Data Science Content Creator
outliers = airbnb_df[iforest.labels_ == 1]
outlier_probs = iforest.predict_proba(outliers)
outlier_probs[:10]
array([[0.51999538, 0.48000462],
       [0.61789522, 0.38210478],
       [0.61802032, 0.38197968],
       [0.35184434, 0.64815566],
       [0.57533286, 0.42466714],
       [0.59038933, 0.40961067],
       [0.57677613, 0.42322387],
       [0.54158826, 0.45841174],
       [0.49118093, 0.50881907],
       [0.21387357, 0.78612643]])
Threshold:
google.head()
              Open    High     Low   Close    Volume  day_of_week  month  day
Date                                                                         
2006-01-03  211.47  218.05  209.32  217.83  13137450            1      1    3
2006-01-04  222.17  224.70  220.09  222.84  15292353            2      1    4
2006-01-05  223.22  226.00  220.97  225.85  10815661            3      1    5
2006-01-06  228.66  235.49  226.85  233.06  17759521            4      1    6
2006-01-09  233.44  236.94  230.70  233.68  12795837            0      1    9
from sklearn.preprocessing import QuantileTransformer# Define the cols to be scaled to_scale = ['Open', 'High', 'Low', 'Close', 'Volume']# Initiate the transformer qt = QuantileTransformer(output_distribution="normal") # Scale and store the columns back google.loc[:, to_scale] = qt.fit_transform(google[to_scale])
# Create a list of estimators estimators = [KNN(n_neighbors=20), LOF(n_neighbors=20), IForest()]# Create an empty array shape = (len(google), len(estimators)) probability_scores = np.empty(shape=shape)
estimators = [KNN(n_neighbors=20), LOF(n_neighbors=20), IForest()] shape = (len(google), len(estimators)) probability_scores = np.empty(shape=shape)# Loop over and fit for index, est in enumerate(estimators): est.fit(google)# Create probabilities probs = est.predict_proba(google)# Store the probs probability_scores[:, index] = probs[:, 1]
mean_scores = np.mean(probability_scores, axis=1)
mean_scores
array([0.20699869, 0.21455413, 0.17166271, ..., 0.31255075, 0.33553513,
       0.32217186])
median_scores = np.mean(probability_scores, axis=1)
median_scores
array([0.20699869, 0.21455413, 0.17166271, ..., 0.31255075, 0.33553513,
       0.32217186])
# Create a mask with 75% threshold is_outlier = median_scores > 0.75# Filter the outliers outliers = google[is_outlier]len(outliers)
3
# Create a list of estimators estimators = [KNN(n_neighbors=20), LOF(n_neighbors=20), IForest()] probability_scores = np.empty(shape=(len(google), len(estimators)))for index, est in enumerate(estimators): # Fit and generate probabilities est.fit(google) probs = est.predict_proba(google) # Store the probabilities probability_scores[:, index] = probs[:, 1]
# Average the scores
mean_scores = np.mean(probability_scores, axis=1)
# Filter with 75% threshold
outliers = google[mean_scores > 0.75]
print(len(outliers))
3
Anomaly Detection in Python