Hyperparameter tuning of Isolation Forest

Anomaly Detection in Python

Bekhruz (Bex) Tuychiev

Kaggle Master, Data Science Content Creator

Tuning contamination

  • No determined way of tuning it
  • Have to rely on:
    • intuition
    • EDA insights
    • domain knowledge
    • business expectations
Anomaly Detection in Python

Survey example

  • Research similar surveys
  • Learn the proportion of the poorest and the wealthiest
  • Research is better than blindly choosing a value
Anomaly Detection in Python

Big Mart sales data

import pandas as pd

big_mart = pd.read_csv("big_mart_sales.csv")
big_mart.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7060 entries, 0 to 7059
Data columns (total 5 columns):
 #   Column            Non-Null Count  Dtype  
 0   weight            7060 non-null   float64
 1   fat_content       7060 non-null   object 
 2   type              7060 non-null   object 
 3   max_retail_price  7060 non-null   float64
 4   sales             7060 non-null   float64
dtypes: float64(3), object(2)
Anomaly Detection in Python

Encode categoricals

big_mart = pd.get_dummies(big_mart)
   weight  max_retail_price      sales  fat_content_low_fat    fat_content_regular
0    9.30          249.8092  3735.1380                    1                      0
1    5.92           48.2692   443.4228                    0                      1
2   17.50          141.6180  2097.2700                    1                      0
3   19.20          182.0950   732.3800                    0                      1
4    8.93           53.8614   994.7052                    1                      0
Anomaly Detection in Python

evaluate_outlier_classifier

def evaluate_outlier_classifier(model, data):
    # Get labels
    labels = model.fit_predict(data)

    # Return inliers
    return data[labels == 0]
Anomaly Detection in Python

evaluate_regressor

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
Anomaly Detection in Python

evaluate_regressor

def evaluate_regressor(inliers):
    X = inliers.drop("sales", axis=1) 
    y = inliers[['sales']]


X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=10) lr = LinearRegression() lr.fit(X_train, y_train)
preds = lr.predict(X_test) rmse = mean_squared_error(y_test, preds, squared=False) return round(rmse, 3)
Anomaly Detection in Python

Tuning contamination

contaminations = [0.05, 0.1, 0.2, 0.3]
scores = dict()


for c in contaminations: # Instantiate IForest with the current c iforest = IForest(contamination=c, random_state=10)
# Get inliers with the current IForest inliers = evaluate_outlier_classifier(iforest, big_mart)
# Calculate and store RMSE into scores scores[c] = evaluate_regressor(inliers)
Anomaly Detection in Python

Look at the output

print(scores)
{0.05: 1148.555, 0.1: 1147.48, 0.2: 1082.307, 0.3: 1029.33}
Anomaly Detection in Python

Tuning multiple hyperparameters

estimators = [100, 200, 300,]
max_samples = [0.6, 0.8, 1]
scores = dict()
Anomaly Detection in Python

Cartesian product

from itertools import product

list(product(estimators, max_samples))
[(100, 0.6),
 (100, 0.8),
 (100, 1),
 (200, 0.6),
 (200, 0.8),
 (200, 1),
 (300, 0.6),
 (300, 0.8),
 (300, 1)]
Anomaly Detection in Python

Inside the loop

estimators = [100, 200, 300,]
max_samples = [0.6, 0.8, 1]
scores = dict()


for e, m in product(estimators, max_samples):
# Instantiate an IForest iforest = IForest(n_estimators=e, max_samples=m, contamination=.3)
# Get the inliers with the current IForest inliers = evaluate_outlier_classifier(iforest, big_mart) # Calculate and store RMSE into scores scores[(e, m)] = evaluate_regressor(inliers)
Anomaly Detection in Python

Looking at the output

print(scores)
{(100, 0.6): 959.398,
 (100, 0.8): 986.056,
 (100, 1): 1195.875,
 (200, 0.6): 947.628,
 (200, 0.8): 933.115,
 (200, 1): 1195.875,
 (300, 0.6): 949.412,
 (300, 0.8): 935.962,
 (300, 1): 1195.875}
Anomaly Detection in Python

Parallel execution

# Faster compuation with n_jobs=-1
iforest = IForest(n_estimators=1000, n_jobs=-1)

iforest.fit(big_mart)
Anomaly Detection in Python

Let's practice!

Anomaly Detection in Python

Preparing Video For Download...