Foundations of Inference in Python
Paul Savala
Assistant Professor of Mathematics
Expect equal distribution above and below prediction
$H_0$: Data is normally distributed
$H_a$: Data is not normally distributed
result = stats.anderson(police_df['Annual Salary'])
result.statistic
27.41
result.critical_values
[0.574, 0.654, 0.784, 0.915, 1.088]
result.significance_level[result.statistic > result.critical_values]
[15. 10. 5. 2.5 1. ]
mu, std = stats.norm.fit(police_df['Annual Salary'])
estimated_pct_under_70k = stats.norm.cdf(70000, loc=mu, scale=std)
print(estimated_pct_under_70k)
0.27
actual_under_70k = police_df[police_df['Annual Salary'] < 70000]
print(len(actual_under_70k) / len(police_df))
0.20
Foundations of Inference in Python