Foundations of Inference in Python
Paul Savala
Assistant Professor of Mathematics
stats.norm.interval
salaries_df['Years of Employment']
[6, 11, 14, 3, 2, ...]
sample_1 = salaries_df['Years of Employment'].sample(n=10)
print(max(sample_1) - min(sample_1))
7
# Statistic function def max_min(x): return max(x) - min(x)
# Data as a tuple data = (salaries_df['Years of Employment'], )
bootstrap_ci = stats.bootstrap(data, max_min, vectorized=False, n_resamples=1000)
print(bootstrap_ci)
BootstrapResult(confidence_interval=ConfidenceInterval(low=33.0, high=38.0),
standard_error=1.3843971812870597)
Foundations of Inference in Python