Forecasting in R
Rob J. Hyndman
Professor of Statistics at Monash University
Forecasting Notation: $\hat y_{t + h \vert t} = \text{ point forecast of } \ \hat y_{t + h} \ \text{given data }\ y_1,...,y_t$
Forecast Equation: $\hat y_{t + h \vert t} = \alpha y_t + \alpha (1-\alpha ) y_{t-1} + \alpha (1-\alpha )^2 y_{t-2} +...$
$$where \ 0 \leq \alpha \leq 1 $$
Observation | $\alpha$ = 0.2 | $\alpha$ = 0.4 | $\alpha$ = 0.6 | $\alpha$ = 0.8 |
---|---|---|---|---|
$y_t$ | 0.2 | 0.4 | 0.6 | 0.8 |
$y_{t-1}$ | 0.16 | 0.24 | 0.24 | 0.16 |
$y_{t-2}$ | 0.128 | 0.144 | 0.096 | 0.032 |
$y_{t-3}$ | 0.1024 | 0.0864 | 0.0384 | 0.0064 |
$y_{t-4}$ | (0.2)(0.8)$^4$ | (0.4)(0.6)$^4$ | (0.6)(0.4)$^4$ | (0.8)(0.2)$^4$ |
$y_{t-5}$ | (0.2)(0.8)$^5$ | (0.4)(0.6)$^5$ | (0.6)(0.4)$^5$ | (0.8)(0.2)$^5$ |
Component form | |
---|---|
Forecast equation | $\hat{y}_{t+h \mid t} = \ell_t$ |
Smoothing equation | $\ell_t = \alpha y_t + (1-\alpha)\ell_{t-1}$ |
$$SSE = \sum_{t=1}^T (y_t - \hat y_{t\vert t-1})^2$$
oildata <- window(oil, start = 1996) # Oil Data
fc <- ses(oildata, h = 5) # Simple Exponential Smoothing
summary(fc)
Forecast method: Simple exponential smoothing
Model Information:
Simple exponential smoothing
Call:
ses(y = oildata, h = 5)
Smoothing parameters:
alpha = 0.8339
Initial states:
l = 446.5759
sigma: 28.12
*** Truncated due to space
autoplot(fc) +
ylab("Oil (millions of tonnes)") + xlab("Year")
Forecasting in R