Forecasting in R
Rob J. Hyndman
Professor of Statistics at Monash University
autoplot(debitcards) +
xlab("Year") + ylab("million ISK") +
ggtitle("Retail debit card usage in Iceland")
fit <- auto.arima(debitcards, lambda = 0)
fit
Series: debitcards
ARIMA(0,1,4)(0,1,1)[12]
Box Cox transformation: lambda= 0
Coefficients:
ma1 ma2 ma3 ma4 sma1
-0.796 0.086 0.263 -0.175 -0.814
s.e. 0.082 0.099 0.100 0.080 0.112
sigma^2 estimated as 0.00232: log likelihood=239.3
AIC=-466.7 AICc=-466.1 BIC=-448.6
fit %>%
forecast(h = 36) %>%
autoplot() + xlab("Year")
Forecasting in R