Forecasting in R
Rob J. Hyndman
Professor of Statistics at Monash University



training <- window(oil, end = 2003)
test <- window(oil, start = 2004)
fc <- naive(training, h = 10)
autoplot(fc) + autolayer(test, series = "Test data")

Compute accuracy using forecast errors on test data
| Accuracy measure | Calculation | 
|---|---|
| Mean absolute error | $\text{MAE} = avg(\mid e_t \mid)$ | 
| Mean squared error | $\text{MSE} = avg(e_t^2)$ | 
| Mean absolute percentage error | $\text{MAPE} = 100 \times avg(\mid \frac{e_t}{y_t} \mid )$ | 
| Mean absolute scaled error | $\text{MASE} = \frac{\text{MAE}}{Q}$ where $Q$ is a scaling constant | 
accuracy(fc, test)
                  ME   RMSE    MAE    MPE    MAPE    MASE    ACF1  Theil's U
Training set   9.874  52.56  39.43  2.507  12.571  1.0000  0.1802         NA
Test set      21.602  35.10  29.98  3.964   5.778  0.7603  0.4030      1.185
  Forecasting in R