Analyzing Survey Data in Python
EbunOluwa Andrew
Data Scientist
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
exercise_data = pd.read_csv('workout_survey_data.csv') print(exercise_data.head())
| workout_minutes | calories_burned |
|-----------------|-----------------|
| 77 | 79.775152 |
| 21 | 23.177279 |
| 22 | 25.609262 |
| 20 | 17.857388 |
x = independent variable y = dependent variable
x = exercise_data.minutes.tolist()
y = exercise_data.calories.tolist()
print(x,'\n',y)
| [77, 21, 22, 20, 36... |
|----------------------------------|
| [79.7, 23.1, 25.6, 17.8, 41.8... |
workout_minutes | calories_burned |
---|---|
77 | 79.775152 |
21 | 23.177279 |
22 | 25.609262 |
20 | 17.857388 |
36 | 41.849864 |
x = sm.add_constant(x)
print (x)
result = sm.OLS(y,x).fit()
print(result.summary())
x = exercise_data.minutes.tolist()
y = exercise_data.calories.tolist()
plt.scatter(x,y)
plt.xlabel('minutes')
plt.ylabel('calories')
plt.show()
max_x = exercise_data.minutes.max() min_x = exercise_data.minutes.min() x = np.arange(min_x, max_x, 1)
y = 1.0072*x + 0.1552
plt.plot(y, 'r') plt.show()
y = 1.0072 * 30 + 0.1552
print(y)
30.3712
Analyzing Survey Data in Python