Analyzing Survey Data in Python
EbunOluwa Andrew
Data Scientist
employee | gender | company_type | wfh_available | mental_fatigue_score | burn_rate |
---|---|---|---|---|---|
fff200 | Male | Service | No | 3 | 0.24 |
fff500 | Female | Service | Yes | 5.7 | 0.45 |
fff700 | Female | Service | Yes | 5.8 | 0.49 |
fff300 | Female | Service | Yes | 6.7 | 0.63 |
fff100 | Female | Product | Yes | 4.7 | 0.38 |
fff400 | Male | Service | Yes | 3.4 | 0.28 |
fff600 | Female | Product | Yes | 5.4 | 0.5 |
fffe3400 | Female | Product | No | 6.7 | 0.58 |
fffe200 | Male | Service | Yes | 6.3 | 0.48 |
fffe3000 | Male | Service | Yes | 5.4 | 0.41 |
data.plot.scatter(
x='mental_fatigue_score',
y='burn_rate')
plt.show()
employee | gender | company_type | wfh_available | mental_fatigue_score | burn_rate |
---|---|---|---|---|---|
fff100 | Female | Product | Yes | 4.7 | 0.38 |
fff400 | Male | Service | Yes | 3.4 | 0.28 |
fff600 | Female | Product | Yes | 5.4 | 0.5 |
company_type | burn_rate |
---|---|
Service | 0.57 |
Service | 0.75 |
Service | 0.51 |
Service | 0.57 |
company_type | burn_rate |
---|---|
Product | 0.51 |
Product | 0.79 |
Product | 0.66 |
Product | 0.39 |
Variable #1
company_type
Variable #2
wfh_available
company_type | wfh_available |
---|---|
Product | Yes |
Product | Yes |
Product | No |
Service | Yes |
Service | Yes |
Product | Yes |
Service | No |
Service | No |
Product | Yes |
Service | Yes |
Both variables = numerical
Analyzing Survey Data in Python