Analyzing Survey Data in Python
EbunOluwa Andrew
Data Scientist




| employee | gender | company_type | wfh_available | mental_fatigue_score | burn_rate |
|---|---|---|---|---|---|
| fff200 | Male | Service | No | 3 | 0.24 |
| fff500 | Female | Service | Yes | 5.7 | 0.45 |
| fff700 | Female | Service | Yes | 5.8 | 0.49 |
| fff300 | Female | Service | Yes | 6.7 | 0.63 |
| fff100 | Female | Product | Yes | 4.7 | 0.38 |
| fff400 | Male | Service | Yes | 3.4 | 0.28 |
| fff600 | Female | Product | Yes | 5.4 | 0.5 |
| fffe3400 | Female | Product | No | 6.7 | 0.58 |
| fffe200 | Male | Service | Yes | 6.3 | 0.48 |
| fffe3000 | Male | Service | Yes | 5.4 | 0.41 |
data.plot.scatter(
x='mental_fatigue_score',
y='burn_rate')
plt.show()


| employee | gender | company_type | wfh_available | mental_fatigue_score | burn_rate |
|---|---|---|---|---|---|
| fff100 | Female | Product | Yes | 4.7 | 0.38 |
| fff400 | Male | Service | Yes | 3.4 | 0.28 |
| fff600 | Female | Product | Yes | 5.4 | 0.5 |
| company_type | burn_rate |
|---|---|
| Service | 0.57 |
| Service | 0.75 |
| Service | 0.51 |
| Service | 0.57 |
| company_type | burn_rate |
|---|---|
| Product | 0.51 |
| Product | 0.79 |
| Product | 0.66 |
| Product | 0.39 |
Variable #1
company_typeVariable #2
wfh_available| company_type | wfh_available |
|---|---|
| Product | Yes |
| Product | Yes |
| Product | No |
| Service | Yes |
| Service | Yes |
| Product | Yes |
| Service | No |
| Service | No |
| Product | Yes |
| Service | Yes |
Both variables = numerical



Analyzing Survey Data in Python