Developing Machine Learning Models for Production
Sinan Ozdemir
Data Scientist, Entrepreneur, and Author
def test_pipeline():
# Generate mock data for testing
X_train = pd.DataFrame({'age': [25, 30, 35, 40], 'income': [50000, 60000, 70000, 80000])
y_train = pd.Series([0, 0, 1, 1])
pipeline = Pipeline([('preprocessing', DataPreprocessor()), # Set up pipeline
('model', LogisticRegression())])
pipeline.fit(X_train, y_train) # Fit pipeline on training data
# Generate mock data for testing
X_test = pd.DataFrame({'age': [30, 35, 40, 45], 'income': [55000, 65000, 75000, 85000])
y_test = pd.Series([0, 0, 1, 1])
y_pred = pipeline.predict(X_test)
accuracy = accuracy_score(y_test, y_pred) # Evaluate pipeline on test data
assert accuracy > 0.8, "Error: pipeline accuracy is too low."
Identifying
Addressing
Developing Machine Learning Models for Production