A/B Testing in Python
Moe Lotfy, PhD
Principal Data Science Manager
# Calculate standardized effect size
from statsmodels.stats.proportion import proportion_effectsize
effect_size_std = proportion_effectsize(.33, .3)
print(effect_size_std)
0.0645
# Calculate standardized effect size
from statsmodels.stats.proportion import proportion_effectsize
effect_size_std = proportion_effectsize(p_B, p_A)
print(effect_size_std)
0.0716
# Import power module
from statsmodels.stats import power
# Calculate sample size
sample_size = power.TTestIndPower().solve_power(effect_size=effect_size_std,
power=.80,
alpha=.05,
nobs1=None)
print(sample_size)
3057.547
# Import t-test power package
from statsmodels.stats.power import TTestIndPower
# Specify parameters for power analysis
sample_sizes = array(range(10, 120))
effect_sizes = array([0.2, 0.5, 0.8])
# Plot power curves
TTestIndPower().plot_power(nobs=sample_sizes, effect_size=effect_sizes)
plt.show()
# Calculate the baseline mean order value
mean_A = checkout[checkout['checkout_page']=='A']['order_value'].mean()
print(mean_A)
24.9564
std_A = checkout[checkout['checkout_page']=='A']['order_value'].std()
print(std_A)
2.418
# Specify the desired minimum average order value
mean_new = 26
# Calculate the standardized effect size
std_effect_size=(mean_new-mean_A)/std_A
sample_size = power.TTestIndPower().solve_power(effect_size=std_effect_size,
power=.80,
alpha=.05,
nobs1=None)
print(sample_size)
85.306
A/B Testing in Python