A/B Testing in Python
Moe Lotfy, PhD
Principal Data Science Manager
Good use of A/B testing:
Do not A/B test if:


checkout.info()
RangeIndex: 9000 entries, 0 to 8999
Data columns (total 6 columns):
 #   Column         Non-Null Count  Dtype  
 0   user_id        9000 non-null   int64  
 1   checkout_page  9000 non-null   object 
 2   order_value    7605 non-null   float64
 3   purchased      9000 non-null   float64
 4   gender         9000 non-null   object 
 5   browser        9000 non-null   object 
dtypes: float64(2), int64(1), object(3)
memory usage: 422.0+ KB
checkout['gender'].value_counts(normalize=True)
F    0.507556
M    0.492444
Name: gender, dtype: float64
sample_df = checkout.sample(n=3000)
sample_df['gender'].value_counts(normalize=True)
M    0.506333
F    0.493667
Name: gender, dtype: float64
checkout.groupby('checkout_page')['gender'].value_counts(normalize=True)
checkout_page  gender
A              M         0.505000
               F         0.495000
B              F         0.507333
               M         0.492667
C              F         0.520333
               M         0.479667
Name: gender, dtype: float64
A/B Testing in Python