Quantitative Risk Management in R
Alexander McNeil
Professor, University of York
$$f_X(x) = {{1} \over {\sigma \sqrt{2\pi}}} e^{-{{(x-\mu)^2} \over {\sigma ^ 2}}} $$
$$\hat{\mu} = {1 \over n} {\sum_{t=1}^n}X_t $$
$$\hat{\sigma}^2_u = {1 \over {n - 1}} {\sum_{t=1}^n}(X_t - \hat{\mu})^2 $$
head(ftse)
-0.09264548 -0.08178433 -0.07428657 -0.05870079 -0.05637430 -0.05496918
tail(ftse)
0.05266208 0.06006960 0.07742977 0.07936751 0.08469137 0.09384244
mu <- mean(ftse)
sigma <- sd(ftse)
c(mu, sigma)
-0.0003378627 0.0194090385
hist(ftse, nclass = 20, probability = TRUE)
lines(ftse, dnorm(ftse, mean = mu, sd = sigma), col = "red")
Quantitative Risk Management in R