Quantitative Risk Management in R
Alexander McNeil
Professor, University of York
$$
$$X^2 = n(n+2) \sum_{j=1}^k{{\hat{\rho}(j)^2} \over {n-j}}$$
Box.test(ftse, lag = 10, type = "Ljung")
Box-Ljung test
data: ftse
X-squared = 41.602, df = 10, p-value = 8.827e-06
Box.test(abs(ftse), lag = 10, type = "Ljung")
Box-Ljung test
data: abs(ftse)
X-squared = 314.62, df = 10, p-value < 2.2e-16
ftse_w <- apply.weekly(ftse, FUN = sum)
head(ftse_w, n = 3)
^FTSE
2008-01-04 -0.01693075
2008-01-11 -0.02334674
2008-01-18 -0.04963134
Box.test(ftse_w, lag = 10, type = "Ljung")
Box-Ljung test
data: ftse_w
X-squared = 18.11, df = 10, p-value = 0.05314
$$$$$$$$$$$$$$$$
Box.test(abs(ftse_w), lag = 10, type = "Ljung")
Box-Ljung test
data: abs(ftse_w)
X-squared = 34.307, df = 10, p-value = 0.0001638
Quantitative Risk Management in R