Introduction to Deep Learning with PyTorch
Jasmin Ludolf
Senior Data Science Content Developer, DataCamp
experience_level employment_type remote_ratio company_size salary_in_usd
0 0 0.5 1 0.036
1 0 1.0 2 0.133
2 0 0.0 1 0.234
1 0 1.0 0 0.076
2 0 1.0 1 0.170
$$
$$
def mean_squared_loss(prediction, target):
return np.mean((prediction - target)**2)
$$
criterion = nn.MSELoss()
# Prediction and target are float tensors
loss = criterion(prediction, target)
# Create the dataset and the dataloader dataset = TensorDataset(torch.tensor(features).float(), torch.tensor(target).float())
dataloader = DataLoader(dataset, batch_size=4, shuffle=True)
# Create the model model = nn.Sequential(nn.Linear(4, 2), nn.Linear(2, 1))
# Create the loss and optimizer criterion = nn.MSELoss() optimizer = optim.SGD(model.parameters(), lr=0.001)
for epoch in range(num_epochs):
for data in dataloader:
# Set the gradients to zero optimizer.zero_grad()
# Get feature and target from the data loader feature, target = data
# Run a forward pass pred = model(feature) # Compute loss and gradients loss = criterion(pred, target) loss.backward()
# Update the parameters optimizer.step()
Introduction to Deep Learning with PyTorch