Introduction to MLflow
Weston Bassler
Senior MLOps Engineer
mlflow.projects
mlflow.projects.run()
uri
- URI to MLproject file
entry_point
- Entry point to start run from MLproject
experiment_name
- Experiment to track training run
env_manager
- Python environment manager: local
or virtualenv
# Run MLflow Project mlflow.projects.run(
uri='./',
entry_point='main',
experiment_name='My Experiment',
env_manager='virtualenv'
)
name: salary_model
python_env: python_env.yaml
entry_points:
main:
command: "python train_model.py"
# Import libraries and modules import mlflow import mlflow.sklearn import pandas as pd from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split
# Training Data df = pd.read_csv('Salary_predict.csv') X = df[["experience", "age", "interview_score"]] y = df[["Salary"]]
# Train test split X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7, random_state=0)
# Set Auto logging for Scikit-learn flavor mlflow.sklearn.autolog() # Train model lr = LinearRegression() lr.fit(X_train, y_train)
# Import MLflow Module import mlflow
# Run local Project mlflow.projects.run(uri='./', entry_point='main', experiment_name='Salary Model')
# Run local Project
mlflow.projects.run(uri='./', entry_point='main',
experiment_name='Salary Model')
2023/04/02 14:33:23 INFO mlflow.projects: 'Salary Model' does not exist. Creating a new experiment
2023/04/02 14:33:23 INFO mlflow.utils.virtualenv: Installing python 3.10.8 if it does not exist 2023/04/02 14:33:23 INFO mlflow.utils.virtualenv: Creating a new environment /.mlflow/envs/mlflow-44f5094bba686a8d4a5c772 created virtual environment CPython3.10.8.final.0-64 in 236ms 2023/04/02 14:33:23 INFO mlflow.utils.virtualenv: Installing dependencies
2023/04/02 14:33:59 INFO mlflow.projects.backend.local: === Running command 'source /.mlflow/envs/mlflow-44f5094bba686a8d4a5c772/bin/activate && python train_model.py' in run with ID '562916d45aeb48ec84c1c393d6e3f5b6' ===
2023/04/02 14:34:34 INFO mlflow.projects: === Run (ID '562916d45aeb48ec84c1c393d6e3f5b6') succeeded ===
mlflow run
--entry-point
- Entry point to start run from MLproject
--experiment-name
- Experiment to track training run
--env-manager
- Python environment manager: local
or virtualenv
URI
- URI to MLproject file
# Run main entry point from Salary Model experiment
mlflow run --entry-point main --experiment-name "Salary Model" ./
2023/04/02 15:23:34 INFO mlflow.utils.virtualenv: Installing python 3.10.8 if it does not exist 2023/04/02 15:23:34 INFO mlflow.utils.virtualenv: Environment /.mlflow/envs/mlflow-44f5094bba686a8d4a5c772 already exists
2023/04/02 15:23:34 INFO mlflow.projects.backend.local: === Running command 'source /Users/weston/.mlflow/envs/mlflow-44f5094bba686a8d4a5c772/bin/activate && python train_model.py' in run with ID 'da5b37b6f53245e5bca59ba8ed6d7dc1' ===
2023/04/02 15:23:38 INFO mlflow.projects: === Run (ID 'da5b37b6f53245e5bca59ba8ed6d7dc1') succeeded ===
Introduction to MLflow