Introduction to Optimization in Python
Jasmin Ludolf
Content Developer
Objective functions and constraints have a linear relationship
Opposed to linear constrained: mix of linear or non linear elements
Type | Count | Bottles (h/box) | Cups (h/box) |
---|---|---|---|
$M_A$ | 4 | 1.5 | 1.3 |
$M_B$ | 3 | 0.8 | 2.1 |
B ($/box) | C ($/box) |
---|---|
480 | 510 |
from pulp import *
model = LpProblem('MaxProfit', LpMaximize)
B = LpVariable('B', lowBound=0) C = LpVariable('C', lowBound=0)
model += 480*B + 510*C
model += 1.5*B + 1.3*C - 120, "M_A" model += 0.8*B + 2.1*C - 90, "M_B"
LpMaximize
or LpMinimize
print(model)
ProductMix:
MAXIMIZE
480*B + 510*C + 0
SUBJECT TO
M_A: 1.5 B + 1.3 C <= 120
M_B: 0.8 B + 2.1 C <= 90
VARIABLES
B Continuous
C Continuous
status = model.solve()
print(status)
Welcome to the CBC MILP Solver
...
1
print(f"Profit = {value(model.objective):.2f}")
print(f"Tons of bottles = {B.varValue:.2f}, tons of cups = {C.varValue:.2f}")
Profit = 40137.44
Boxes of bottles = 63.98, boxes of cups = 18.48
variables = LpVariable.dicts("Product", ['B', 'C'], lowBound=0)
OR
variables = LpVariable.dicts("Product", range(2), 0)
A = LpVariable.matrix('A', (range(2), range(2)), 0)
box_profit = {'B': 480, 'C': 510}
model += lpSum([box_profit[i] * variables[i] for i in ['B', 'C']])
model += 1.5*variables['B'] + 1.3*variables['C'] <= 120, "M_A"
model += 0.8*variables['B'] + 2.1*variables['C'] <= 90, "M_B"
Introduction to Optimization in Python