Natural Language Processing with spaCy
Azadeh Mobasher
Principal Data Scientist
spaCy
provides a readable and production-level alternative, the Matcher
class.
import spacy from spacy.matcher import Matcher
nlp = spacy.load("en_core_web_sm") doc = nlp("Good morning, this is our first day on campus.")
matcher = Matcher(nlp.vocab)
pattern = [{"LOWER": "good"}, {"LOWER": "morning"}]
matcher.add("morning_greeting", [pattern])
matches = matcher(doc) for match_id, start, end in matches: print("Start token: ", start, " | End token: ", end, "| Matched text: ", doc[start:end].text)
>>> Start token: 0 | End token: 2 | Matched text: Good morning
in
, not in
and comparison operators
Attribute | Value type | Description |
---|---|---|
IN |
any type | Attribute value is a member of a list |
NOT_IN |
any type | Attribute value is not a member of a list |
== , >= , <= , > , < |
int, float | Comparison operators for equality or inequality checks |
IN
operator to match both good morning
and good evening
doc = nlp("Good morning and good evening.")
matcher = Matcher(nlp.vocab)
pattern = [{"LOWER": "good"}, {"LOWER": {"IN": ["morning", "evening"]}}]
matcher.add("morning_greeting", [pattern])
matches = matcher(doc)
IN
operatorfor match_id, start, end in matches:
print("Start token: ", start, " | End token: ", end,
"| Matched text: ", doc[start:end].text)
>>> Start token: 0 | End token: 2 | Matched text: Good morning
Start token: 3 | End token: 5 | Matched text: good evening
PhraseMatcher
class matches a long list of phrases in a given text.
from spacy.matcher import PhraseMatcher
nlp = spacy.load("en_core_web_sm")
matcher = PhraseMatcher(nlp.vocab)
terms = ["Bill Gates", "John Smith"]
patterns = [nlp.make_doc(term) for term in terms] matcher.add("PeopleOfInterest", patterns)
doc = nlp("Bill Gates met John Smith for an important discussion regarding importance of AI.")
matches = matcher(doc) for match_id, start, end in matches: print("Start token: ", start, " | End token: ", end, "| Matched text: ", doc[start:end].text)
>>> Start token: 0 | End token: 2 | Matched text: Bill Gates
Start token: 3 | End token: 5 | Matched text: John Smith
attr
argument of the PhraseMatcher
classmatcher = PhraseMatcher(nlp.vocab, attr = "LOWER")
terms = ["Government", "Investment"] patterns = [nlp.make_doc(term) for term in terms] matcher.add("InvestmentTerms", patterns) doc = nlp("It was interesting to the investment division of the government.")
matcher = PhraseMatcher(nlp.vocab, attr = "SHAPE")
terms = ["110.0.0.0", "101.243.0.0"] patterns = [nlp.make_doc(term) for term in terms] matcher.add("IPAddresses", patterns) doc = nlp("The tracked IP address was 234.135.0.0.")
Natural Language Processing with spaCy